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 Many-body Schrodinger’s equations

* Density functional theory and single particle equation

* Selfconsistent calculation/nonlinear equation/optimization
* Optical properties

* Basis functions for wavefunctions

* Pseudopotentials

* Technical points in planewave calculations




Many body Schrodinger’s equation

Schrodinger’s equation (1930°s): the great result of reductionism !
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All the material science and chemistry is included in this equation !

The challenge: to solve this equation for complex real systems.

For stationary solution: \P(rl,..rN, 1) = e_lwt\P(lfl,..rN)
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The famous Einstein formula: E=ho

Ground state: the lowest E state; Excited state: higher E state.




Many body wavefunctions

Electrons are elementary particles, two electrons are indistinguishable

Y(r,1p.r;ry) = 0¥ (R, .0 ny)

J

a’ =1

o = 1 , Boson: phonon, photon, W-boson, Higgs-boson, ....

(usually particles which transmit forces)

o = —1 , Fermion: electron, proton, neutron, quark,muon, ....

(usually particles which constitute the matter)

For our case: electron

Y1, tpryry) = =Y (n,.r.r..ry)

! J



Many body wavefunctions
Y1, 1.rry) ==Y (1,1 r.ry) antisymmetric
J‘J‘II\I"(I”I,...I”N) B dr..dry, =N normalized

One example of the antisymmetric wavefunction: Slater determinate

W(7..ly ) = | oo

The partial differential equation becomes separable




Another way to look at it: variational methods ]
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The ground state corresponds to the optimized state ¥ which is
antisymmetric and normalized.

So, we can try variational ¥ for whatever expressions we like

linear eigen value variational _ | nonlinear problem

Plug in the Slater determinate for ¥, we have (Hartree-Fock equation):

—l 2 L ,O(I"') r r r r = r
=2V +;|F_R|+j|r_ | }¢<>+ij¢< N, (' )dr' = E,(r)



Some concepts and terminologies
(I)l(rl) ......... (I)N(rl)
b o T o e
: N N+2
D () eeeeeeee D(ry) N+1
®@;(r) : single particle orbital !
N
One orbital can only have one electron (2 include spin)
------- Pauli exclusion principle
D, ,D,,... Dy the N occupied single particle orbitals ,
1

We also have: ®,,, Py,,,... the unoccupied orbitals

Using one of ®,,,, Py,y,... toreplace oneof ®, D, ,... Dy

the resulting Slater determinant will correspond to one excited state

For the lowest excited state: £, .., — E e = Ey, — E, (band gap)



Energy breakup

EMF = Z - % [ 0.V, (r)dr + | ;ﬁp(r)dr + % [£ DA i g
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Kinetic Electron-ion Electron Coulomb

dr

Ly 2RO,

|7 =7
Exchange energy

Ecorr=Eexact'EHF Whatever left from HF

Kinetic: ~ 40 eV/atom Coulomb: ~ 40 eV/atom

Exchange: ~20eV/atom Correlation: ~4 eV/atom

Typical chemical bond: ~2 eV Every term is important

For chemical accuracy, we need: ~ 0.05 eV/atom



Different configurations: CI —

@,(ry) - (I)j,c(rl) e D(ry) J:¢ electron
N+2
SDconf(rl’"rN)= ................................. N+1
(I)l(rN) (I)j,c(rN) (I)N(rN)
N
CI: configuration interaction
i,v hole
Y(r,..ry) = ZC(conﬁg)SDconﬁg(lq,...,rN) .
config 1

The number of configuration is exponential, only feasible for a few atom systems.

Judicious selection of configurations: = MP2, coupled-cluster, etc

Traditional quantum chemistry approaches




More on variational many-body wavefunctions —
e
Correlation effects: ¢ One electron at r will repulse other

electrons near r due to Coulomb inter.

e
D (1)) +veeeeeee D (r,)
W () =exp[=) (1) = D u(17; =7 DI | oo,
i ij
Jastrow factor D (Fy) evveeeen DO (ry)

Unfortunately, cannot break down the following integration.
Z
E=[[[¥0in)i- Z T 2 e
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Using Monte-Carlo method to do the integration: variational quantum MC.




Diffusion quantum Monte-Carlo approach
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This looks like a classical diffusion equation with finite temperature

{DV2 +V(r)-— /,l}S(I_;, t) = aéS(F, 1) S(r,t) = particle density
t

Using classical Monte-Carlo to simulate the random movements of particles
in a 3N dimension space.

Problem: S is always positive, but y has both positive and negative due to
antisymmetry = the famous sign problem !

D@ (ry) eeeeeeee @x(r)  ¢o divide the 3N space into
positive and negative
compartments, move articles
within.

Fix nodal approx: use
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Another approach: the density matrix method

E:jH‘P(ifl,..rN){—lZ%Vf+;ﬁ > Z |}‘P(r1, . )dr..dr,
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E=([[ 6(r=r"80, =)=V} + ;v _R|}p<r1,n';rz,rz')dndn'drzdrz'
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po(r,n'rn,n')= H Y(r,n,n,..00) Y@ 5 n,.ry)dr. . dry,

Great, reduce the N variable function into a 4 variable function !!

Problem: po(7,r';r,,r,') might not be N-representable !

* Many necessary conditions to make p N-representable

* The p is within some hyperdimension convex cone.

* Linear programming optimization approach

* Recent work: Z. Zhao, et.al, it can be very accurate, but it is still

very expensive (a few atoms).
* No known sufficient condition




The density functional theory

p(n)= ” Y7, 1, 15,...1 )Y (7, 1y, 1,7 )dr, ..dry,

Any single particle p(r) is N-representable.

Can we use p as one basic variable to determine all other things ?

E:jjjqf(;fl,..m){—z%vﬂz - ! |+ZV(1;)}‘P(73,..rN)dlq..drN
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V(r) is one basic variable which determines everything.

SoV =2 p, Now,canp > V ? (p uniquely determine V)

We need to prove: we cannot have V,= p, and V,~> p.



Density functional theory (continued)

E = Uj \P(rl,..rN){—Z%Vf + Z ~ i o ZV(n)}qJ(n,..rN)dn..drN

We need to prove: we cannot have V,= p, and V,~> p.
Suppose this happens, then V,2>%¥,- p and V,2Y¥,2> p

e Since W, is the variational minimum of V,so: E(V},Y)) <E(V},Y,)
E¢[¥,1+ E, [¥,1+ [Vi(np(r)dr < E([¥,]+ E, [W,1+ [V, (r)p(r)dr
EK [LPI]+EC0uZ [LPI] < EK[\P2] +ECoul[\P2] Eq(l)

- Since ¥, is the variational minimum of V,, so: £(V,,Y,) < E(V,,Y))

E [V, ]+ Eq [V, < Ef [ ]+ Ep,, [ Y] Eq(2)

Eq(1),(2) contradict with each other, so we cannot have V,= p, and V,2 p

We can also prove, smooth p is V-representable (i.e, can find a V- p)

In summary, V is a functional of p, thus everything is a functional of p




Kohn-Sham equation and LDA —

Y[p] exists, so:

E :IH‘P(’?’"FN){‘Z%V? +Z - ir |+ZV(1;)}‘I’(73,..rN)drl..drN

z,]|i j

Elp) = By o1+ [ 22 s B, [p1+ [V () p(r)ar

| r—r'|

Great, change the problem to a fluid-dynamics like problem, just one func. p(r)

Problem: DFT proves that E, [p], E_.[p] exist, but they are unknown.

Many approx. for E,, [p]: Thomas-Fermi, Gradient Expan., Wang-Teter.

1
L. Sham’s idea: approximate E . [p] by I - Engi(r)vz(pi(r)dr

and p(r)= Z| @.(" [, {or)} are orthonormal.




Kohn-Sham equation and LDA (continued)

Use local density approximation (LDA) for E__[p]:
E. [pl= |, (p(r)dr

Find function ¢ _(p) from simple systems: homogeneous electron gas, where
The total energy has been calculated by QMC. The Perdew-Zunger paper.

Now, we have the LDA formula:

(r)p(r')

[r =7

Epp = —%Z [ 0.0, (ydr 4= [ 2OP s [ (p(rdr + [V (r)p(rydr

The ground state solution is a minimum of E, , for variational {@.(r)}

The variational minimum condition: (Kohn-Sham equation)

(V2 V0, (10,1) = B (1)

and: Vi (1) = J%df””fﬂxc (p(r) +V(r)



Selfconsistent calculations

| SV O = By ()
]

W, }izl,..,N
]

p(r) = i v

8
V(r)

Selfconsistency




Planewave expansion of the wavefunction

W(V ) — Z C (q)eiqr S

Due space representation

LV () = Ev, ()

T
diagonal diagonal
in q space in real space

Fast Fourier Transformation between
real space y(r) and Fourier space C(q).
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A parallel Fast Fourier Transformation code

*Specially designed for PW elec.
structure calculation.

*Work load balance
Memory balance
Minimum communication

=
[

EPM calc.

(3—£1000000 atoms
r3 O0—F197336 atoms

126) \\‘-\‘
6—8000 atoms *126)
X
136,

—
S
=

---- ideal

Time for one FFT (sec)
)
=

1 | 1 1 1 1 1 1
2 4 8 18 32 B4 128 256 512
Number of Processors




FFT grids

I I L
Real space grid G—space grid
Vi V@) P VG VG PG

FFT

Gu<0.5Gyys0: | V(W (rdr = AQ 3V (n)y (1)

grid—i

It doesn’t have the usual 1/h2 discretization error, it is exact!

We are not doing the usual discretization

00 ' Ge?2
Note: V'(r)=V(r): V(r)= J.elqu(Q)dq s V'(r)= J‘e"qu(q)dq

0



Pseudopotentials

Onginal wavefunctions
and potential

B A
rerrers| |

The pseudo—wavefunctions
and potentials

I'c

The price:

KB form:

need additional nonlocal potential.

I?nonlocgg(’/') = Z WR,ref (l")j WR,ref (V' )(D(I’" )dr'

R.ref
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A few types of eigen value problems

(1) Total energy calculations: need all the occupied states
(5% of the all lowest eigenstates). Need them inside a
outer loop

(2) Nonselfconsistent optical property calculations:
need a few states at the interior of the spectrum.
One shot calculation.

(3) Transport problems: a special eigenstate problem,
need eigenstates under special boundary conditions.



Total energy problem

{—%VHV(rm(r):E,-wi(r) Need: W/} n

(1) The explicit matrix H is only available for very small
systems (used in 70’s).

(2) For large systems, Hy is done using FFT (due space
representation), so iterative methods are used.

(3) Current methods: .
CG on Grassman’s manifold: M ln<l//l.

Under constraint: <1//l. ‘ Wj> = 51.].

H|‘//i>

(4) Band by band algorithm vs all band algorithm



Total energy problem (continue)

(1) Davison’s method vs CG method

(2) Residual minimization method /
direct inversion in the iterative subspace
(RMM-DIIS)

Using @ = HR,_, to generate a Krylov subspace {¢,}

and use {¢,} to get the minimum residual
R, =(H~{y,|H|y,)v,

This by itself is very slow, but subspace diagonalization
saves the algorithm

Doing each band independently, avoid orthogonalization
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Total energy problem (continue)

(1) Preconditioning: Kinetic energy, diagonal precondition
(2) Lanczos method: can be very fast.

Long Lanczos iteration (10,000) without explicit orth.

:

:

g

Including duplicates

2

2

Not including duplicates

Number of converged eigenvalues
=:
I

1000 1500 2000 2500 3000
Lanczos iteration index i

=

=
g



Total energy calculation (continue)

Lanczos is faster than CG even without precond.

Total number of atoms
99 263 533 333

1055 I T I
Calculated PCG : ¢
Estimated PCG : <

+ | | Gurrent method: e
10 :

108 |

Total CPU times (Cray seconds)

[ ! 1 ! L L L L L |
100 300 500 1000
Total number of occupied states

Challenge: (1) how to use precond. (2) how to restart.




Total energy calculation (continued)

Wish list for total energy calculation algorithms

(1) Iterative method based on Hy

(2) Preconditioning, if possible.

(3) Restart from previously converged states.

(4) Share Krylov space vectors among eigenstates
(Lanczos type methods).

(5) Avoid frequent orthogonalization among the
eigenstates.




Interior eigenstate problem

The challenge: H is not explicitly known, cannot be inverted

Have to rely on iterative methods.

Typically there is a gap in the spectrum, only interested in
gap edge states. A

<«
/
>

index of states




Folded Spectrum Method and Escan Code

(H - gref)ZWi — (gi o gref)ZWi

HW;‘ =&Y,
l /’
CBM — ¢ //
Eref = T T T
VBM — spectrum folding
{€} [ [€i—E€ref]” }




Other methods for interior eigenstates

(1) We can try other methods on (H-E_,)?, e.g, Lanczos

(2) Outer / inner loop methods: inner loop try to 4
approximately invert Hy=x. Does it worth it?
How do they compare to direct, one-loop method?

(3) Jacobi-Davison method.

E
(4) Challenge: current method works on (H-E_)?, the
condition number is much worse than H. Can any
interior eigenstate method be as easy as working
on H? Py(E)

(5) Is interior eigenstate problem intrinsically hard for
interative methods. v, =P,(H)p .




Other ideas

{—%vz V(W () = Ey,(r)

Using 3D 7 points finite difference formula for V2,
H is a sparse matrix in real space grid presentation.
The resulting H’ can be factorized directly using
~200 N,,;4- Then H’y=x can be solved in a linear scaling.
This can be used as a preconditioning, or help to solve
the original Hy=x.

Some problems: there are nonlocal parts in V(r) , thus
it is not really diagonal in real space.



The transport problems

We want to solve: {—%Vz +V(r)w(r)y=Ewy(r)

for a given E inside a real space domain,
outside this domain (or at the boundary), we have
special boundary conditions, e.g:

w(r)=exp(ik(E)eor)+ fexp(—ik(E)er)
y(r) = ccexp(ik(E) o r) ) = exp(E(E) o)

w(r)=aexp(ik(E)er) + Bexp(—ik(E)er)
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